体验DEMO
首页    原创文章    电子商务大数据分析中数据分析的重要性

电子商务大数据分析中数据分析的重要性

  第一、RFM模型

  通过了解在网站有过购买行为的客户,通过分析客户的购买行为来描述客户的价值,就是时间、频率、金额等几个方面继续进行客户区分,通过这个模型进行的数据分析,网站可以区别自己各个级别的会员、铁牌会员、铜牌会员还是金牌会员就是这样区分出来的。同时对于一些长时间都没有购买行为的客户,可以对他们进行一些针对性的营销活动,激活这些休眠客户。使用RFM模型只要根据三个不同的变量进行分组就可以实现会员区分。

  第二、Apriori算法

  这个应该是属于数据挖掘工具的一种,属于关联性分析的一种,就可以看出哪两种商品是有关联性的,例如衣服和裤子等搭配穿法,通过Apriori算法,就可以得出两个商品之间的关联系,这可以确定商品的陈列等因素,也可以对客户的购买经历进行组套销售。

  第三、Spss分析

  主要是针对营销活动中的精细化分析,让针对客户的营销活动更加有针对性,也可以对数据库当中的客户购买过的商品进行分析,例如哪些客户同时购买过这些商品,特别是针对现在电子商务的细分越来越精细,在精细化营销上做好分析,对于企业的营销效果有很大的好处。

  第四、网站分析

  访问量、页面停留等等数据,都是重要的流量指标,进行网站数据分析的时候,流量以及转化率也是衡量工作情况的方式之一,对通过这个指标来了解其他数据的变化也至关重要。

  在电子商务行业竞争越来越大的今天,也是一个花钱的时代,花出去的钱能不能得到收益,是企业最关注的,投资回报率是大家都要考虑的,因此数据分析在电子商务行业的位置也越来越重要。

创建时间:2022-07-10 12:27

推荐新闻

网舟智慧营销解决方案

企业智慧营销数据中台,驱动深度运营和精准营销;

行为分析+用户画像,数据挖掘创造价值。

预约演示和专家交流
体验Demo

eShip跨渠道用户行为分析

跨渠道的用户交互打通,洞察用户全链路生命周期,实时监测、颗粒化深钻,提升用户体验和运营转化。

预约演示和专家交流
体验Demo

eShip Smart Report

傻瓜式数据可视化工具,可聚合数据,拖拉拽方式自由定制数据酷炫报表和大屏

详情介绍
体验Demo